On geometric parametrization of Teichmüller spaces
نویسندگان
چکیده
منابع مشابه
Dual Teichmüller Spaces
We describe in elementary geometrical terms Teichmüller spaces of decorated and holed surfaces. We construct explicit global coordinates on them as well as on the spaces of measured laminations with compact and closed support respectively and show explicitly that the latter spaces are asymptotically isomorphic to the former. We discuss briefly quantisation of Teichmüller spaces and some other a...
متن کاملDual Teichmüller and Lamination Spaces
We survey explicit coordinate descriptions for two (A and X) versions of Teichmüller and lamination spaces for open 2D surfaces, and extend them to the more general setup of surfaces with distinguished collections of points on the boundary. Main features, such as mapping class group action, Poisson and symplectic structures and others, are described in these terms. The lamination spaces are int...
متن کاملCanonical Mappings between Teichmüller Spaces
Introduction. In an important survey article [BIO] Bers reported on the state of knowledge of Teichmüller theory. There has been a lot of progress in the field since that time. The purpose of this paper is to summarize the recent work in one area of Teichmüller space theory. We will concentrate on the hyperbolic properties of Teichmüller spaces, and present as many consequences of this hyperbol...
متن کاملOn the category of geometric spaces and the category of (geometric) hypergroups
In this paper first we define the morphism between geometric spaces in two different types. We construct two categories of $uu$ and $l$ from geometric spaces then investigate some properties of the two categories, for instance $uu$ is topological. The relation between hypergroups and geometric spaces is studied. By constructing the category $qh$ of $H_{v}$-groups we answer the question...
متن کاملGeometry and Quasisymmetric Parametrization of Semmes Spaces
We consider decomposition spaces R/G that are manifold factors and admit defining sequences consisting of cubes-with-handles of finite type. Metrics on R/G constructed via modular embeddings of R/G into a Euclidean space promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R/G×R by R for any m ≥ 0 imposes quantitative topological con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae. Series A. I. Mathematica
سال: 1985
ISSN: 0066-1953
DOI: 10.5186/aasfm.1985.1058